ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. R. Smith
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 20-23
Technical Paper and Note | doi.org/10.13182/NT68-A27980
Articles are hosted by Taylor and Francis Online.
In the Purex process used at the Savannah River Plant, the suppression of the release of radioiodine by complexing it with mercury was tested. Suppressing radioiodine release would be desirable if short-cooled fuel were inadvertently charged to the dissolver in the plant. When irradiated uranium reactor fuels are processed, radioiodine is normally evolved during dissolution with HNO3, clarification, subsequent solvent extraction, and waste evaporation. Normally (without mercury), ∼ 50% of the radioiodine is evolved from the dissolver solution and efficiently sorbed in a silver nitrate bed, but the small amount evolved from the remainder of the process is released to the atmosphere through tall stacks. This release is suppressed by adding mercuric nitrate to the dissolver solution. With 0.04M Hg2+ in the dissolver solution and a gelatin clarifier, the radioiodine atmospheric release was reduced 55-fold. A material balance indicated that the mercury-iodine complex remained in the organic solvent where it was slowly removed by solvent scrubbers and subsequently transferred to a seepage basin. In another test, the presence of 5 × 10−4 M Hg2+ in the dissolver and the use of a MnO2 clarifier reduced 131I atmospheric releases a total of 22-fold. In tests without Hg2+, MnO2 clarification reduced 131I atmospheric releases 2.5-fold over the normal gelatin clarification. Mercurous nitrate (4 × 10−4M) was not more effective than mercuric nitrate (5 × 10−4M) in suppressing 131I evolution.