ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
S. R. Smith
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 20-23
Technical Paper and Note | doi.org/10.13182/NT68-A27980
Articles are hosted by Taylor and Francis Online.
In the Purex process used at the Savannah River Plant, the suppression of the release of radioiodine by complexing it with mercury was tested. Suppressing radioiodine release would be desirable if short-cooled fuel were inadvertently charged to the dissolver in the plant. When irradiated uranium reactor fuels are processed, radioiodine is normally evolved during dissolution with HNO3, clarification, subsequent solvent extraction, and waste evaporation. Normally (without mercury), ∼ 50% of the radioiodine is evolved from the dissolver solution and efficiently sorbed in a silver nitrate bed, but the small amount evolved from the remainder of the process is released to the atmosphere through tall stacks. This release is suppressed by adding mercuric nitrate to the dissolver solution. With 0.04M Hg2+ in the dissolver solution and a gelatin clarifier, the radioiodine atmospheric release was reduced 55-fold. A material balance indicated that the mercury-iodine complex remained in the organic solvent where it was slowly removed by solvent scrubbers and subsequently transferred to a seepage basin. In another test, the presence of 5 × 10−4 M Hg2+ in the dissolver and the use of a MnO2 clarifier reduced 131I atmospheric releases a total of 22-fold. In tests without Hg2+, MnO2 clarification reduced 131I atmospheric releases 2.5-fold over the normal gelatin clarification. Mercurous nitrate (4 × 10−4M) was not more effective than mercuric nitrate (5 × 10−4M) in suppressing 131I evolution.