ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
A. A. Chilenskas
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 11-19
Technical Paper and Note | doi.org/10.13182/NT68-A27979
Articles are hosted by Taylor and Francis Online.
In five laboratory-scale experiments in which irradiated UO2 reactor fuel was processed in a fluidized bed, high removals of uranium and plutonium were achieved by oxidizing with O2, fluorinating with BrF5 to convert uranium to volatile UF6, then fluorinating with F2 to convert plutonium to volatile PuF6. The principal activities volatilized during the oxidation step were ∼ 27% of the krypton and ∼ 3.5% of the ruthenium. During the uranium separation step, >99.5% of the uranium and <0.5% of the plutonium volatilized with ∼ 60% of the ruthenium, ∼ 67% of the krypton, ∼76% of the molybdenum, and ∼2.7% of the antimony. During the F2 step, the principal activities that volatilized concurrently with the plutonium were ∼ 38% of the molybdenum, ∼8% of the ruthenium, ∼ 0.2% of the zirconium, ∼ 5.8% of the niobium, ∼ 1% of the antimony, and ∼ 5% of the krypton. Analyses for tellurium, technetium, and neptunium, which are other possible contaminants in the uranium and plutonium stream, were not completed.