ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
John L. Anderson, Edward Lantz
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 424-436
Technical Paper and Note | doi.org/10.13182/NT68-A27968
Articles are hosted by Taylor and Francis Online.
A nuclear reactor space power system using out-of-pile thermionic diodes, heat pipes, and a dual central absorber rod type of reactivity control has been studied. Emphasis is placed on the neutronic aspects and general feasibility of the concept. Comparison is made between uranium-233 and -235 nitride and plutonium-239 nitride fuels. From a neutronic standpoint, plutonium-239 nitride is found to be a slightly better fuel than uranium-233 nitride for this fast-spectrum reactor. In this concept, heat is transferred from the reactor core to the thermionic diodes by layers of radial heat pipes stacked alternately with slabs of fuel. For this out-of-pile concept, which would supply ∼130 kW(e), the reactor can be considerably smaller than the equivalent reactor with in-pile diodes. It would be particularly adaptable to a shadow-shielded type of application.