ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Uldis Potapovs, J. Russell Hawthorne, Charles Z. Serpan, Jr.
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 389-409
Technical Paper and Note | doi.org/10.13182/NT68-A27965
Articles are hosted by Taylor and Francis Online.
Embrittlement of the Army SM-1A reactor pressure vessel, as modified by the recently completed in-place anneal, was assessed, and an analysis made of its reembrittlement behavior with subsequent radiation service. Experimental results from a surveillance program covering one complete irradiation and annealing cycle are presented, together with a summary of experimental information on the annealing response of the vessel steel (A350-LF1, Modified) from accelerated irradiation programs. These data indicate a 0°F maximum pressure vessel wall Charpy- V 30-ft-lb transition temperature after the in-place anneal vs a −80°F preservice transition temperature (based on the notch ductility properties of a duplicate ring forging). The maximum Charpy- V 30-ft-lb transition temperature of the pressure vessel before the annealing operation was estimated at 190° F. A projection of postanneal pressure vessel lifetime in terms of neutron fluence >0.5 MeV was derived from spectra calculations and the experimentally predicted reirradiation response of the pressure vessel steel. The maximum permissible vessel wall fluence is estimated at 5.5 × 1019 n/cm2 (>0.5 MeV). This is comparable to-124.7 MW-y of reactor operation.