ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Louis Rosen
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 379-388
Technical Paper and Note | doi.org/10.13182/NT68-A27964
Articles are hosted by Taylor and Francis Online.
Recent advances in accelerator technology make possible the attainment of very-high-intensity beams of protons at energies well above the pion-production threshold. It appears that both circular and linear machines will be useful for this purpose. The latter promise beams of ≥ 1 mA under well-controlled conditions. Such proton beams are adequate for providing pure high-intensity beams of negative pions for radiation therapy, under conditions of favorable geometry and of variable size and energy distribution. With π− beams, it is feasible to deposit, at essentially any depth in the human organism, at least 100 rad/min of high-linear-energy transfer radiation. This is quite sufficient for radiation therapy on deep-seated tumors and is accomplished under more favorable conditions than attainable with other radiation sources.