ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
J. A. Lonergan, D. F. Herring
Nuclear Technology | Volume 5 | Number 2 | August 1968 | Pages 79-84
Technical Paper and Note | doi.org/10.13182/NT68-A27955
Articles are hosted by Taylor and Francis Online.
A positron beam is produced and accelerated by an electron linear accelerator. The positrons annihilate in-flight when passed through a beryllium foil to produce nearly monoenergetic gamma rays with energies comparable with the positron energy and an energy spread essentially equal to the energy spread of the positron beam, i.e., 2%. Such a 10-MeV gamma-ray beam was collimated and directed at a slab of aluminum that had a thickness corresponding to one mean-free-path for 10-MeV gamma rays. The energy spectra at 0, 15, and 30° to the incident beam were measured with a NaI crystal. The results were integrated and compared with Monte Carlo calculations. The experiments and calculations agreed within the experimental uncertainty.