ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. M. Zivi
Nuclear Technology | Volume 5 | Number 2 | August 1968 | Pages 53-54
Technical Paper and Note | doi.org/10.13182/NT68-A27949
Articles are hosted by Taylor and Francis Online.
In a loss-of-coolant accident in which gross melting of the core is not prevented, a melt-through of the bottom of the containment vessel may be averted by an unenriched UO2 barrier beneath the reactor vessel. Such a barrier would melt only very slowly because the fuel mass from the core would tend to float on top of the barrier, and the melting front in the barrier could advance only as a result of heat conducted through the previously melted part of the barrier. This gives rise to a melting front advance which varies as mt½, where m is a constant determined by the material properties. A calculation indicates that the rate of penetration of the melting front is more than an order of magnitude less if the core mass floats on the barrier, than if the core mass is more dense than the barrier, and tends to displace it and sink to the melting interface.