ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
K. Wolfsberg, W. R. Daniels, G. P. Ford, E. T. Hitchcock
Nuclear Technology | Volume 3 | Number 9 | September 1967 | Pages 568-574
Technical Paper and Note | doi.org/10.13182/NT67-A27941
Articles are hosted by Taylor and Francis Online.
The study of heavy elements produced in underground thermonuclear explosions requires the separation of trace quantities of actinide elements from several hundred to several thousand grams of fused rock containing the products from about 1017 fissions. After the sample is pulverized and dissolved in HNO3, HClO4, and HF, fluoride insoluble salts are precipitated. These are redissolved, and the actinides and lanthanides are extracted into tributyl phosphate from a solution that is highly salted with Al(NO3)3. The actinides and lanthanides are back-extracted intc water and then extracted into di-2-ethylhexyl phosphoric acid. Recovery from di-2-ethylhexyl phosphoric acid is achieved by esterification with decanol. The actinides are separated from the lanthanides by elution from a cation-exchange resin column with an ethanol-hydrochloric acid solution. Individual actinides are separated by elution from a cation-exchange resin column with α-hydroxyisobutyric acid.