ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
R. Dierckx, A. Marchal, A. van Wauwe
Nuclear Technology | Volume 3 | Number 9 | September 1967 | Pages 532-539
Technical Paper and Note | doi.org/10.13182/NT67-A27934
Articles are hosted by Taylor and Francis Online.
The use of a direct reactivity meter for control-rod calibration was studied. The reactor model was simplified by reducing the number of delayed-neutron and photoneutron groups from 15 to 6, and by putting dn/dt equal to zero, without greatly affecting the accuracy of the reactivity measurements. The influence of errors in the knowledge of the parameters of the remaining six delayed-neutron groups was studied. Measurements were made on two reactors: ECO, a cold reactor; and ISPRA-I, a reactor with a strong long-lived photoneutron source. The measurements performed with the direct reactivity meter were compared to normal rod-drop measurement techniques and period measurement techniques, and were found to agree in general to ±2%. The long-lived source term, which depends on the reactor operation history, was found to a precision of better than ±1%.