ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Alex Volborth, H. A. Vincent
Nuclear Technology | Volume 3 | Number 11 | November 1967 | Pages 701-707
Technical Paper and Note | doi.org/10.13182/NT67-A27907
Articles are hosted by Taylor and Francis Online.
Oxygen is determined by irradiating powdered rock samples with 14-MeV neutrons in a dual-transfer system and counting the 6.1- and 7.1-MeV gammas of 16N and their escape peaks. Corrections for beam instability, tritium target decay and spottiness, and electronic drift are made by consecutively switching samples to be irradiated and counted at opposite stations. Corrections must be made for the fluorine content of rocks. Reagent chemicals can be used as standards. The method is very precise, and interferences in the high-energy gamma region are undetectable. Two sets of data are given: uncorrected random results, with statistical evaluation of the precision of the method, and recommended results obtained from reanalyzing samples that showed standard deviations of 0.25% oxygen. Analysis of variance for rock samples shows that the USGS standards can be considered homogeneous for oxygen by this technique.