ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Dale M. Holm, W. Mort Sanders
Nuclear Technology | Volume 3 | Number 5 | May 1967 | Pages 308-313
Technical Paper and Note | doi.org/10.13182/NT67-A27890
Articles are hosted by Taylor and Francis Online.
In activation analysis with photons and charged particles, the activities of positron-emitting reaction products are determined by unfolding complex decay curves obtained from a pair of coincidence detectors. Certain interfering reaction products emit a high-energy gamma ray coincident with the positron, and the signal from these was distinguished from the signal from pure positron emitters by collecting a 0.51-MeV annihilation photon in one detector and the other 0.51-MeV annihilation photon plus the high-energy gamma ray in the other detector. Since the improvement in sensitivity is directly related to the interference removal, which increases with the probability of detecting the associated gamma ray, high efficiency was required. The method is illustrated by a photon activation analysis experiment in which oxygen was measured in sodium. The activation product, 15O, is the signal and 22Na and 38K are the interference reaction products. Experiments show that a large (8-in.-diam. × 12-in.-long) “well” detector will give five-fold sensitivity improvement over a 2.3- × 6-in. detector when each is in coincidence with a 2- × 2-in. detector. A time sequence of coincidence-gated spectra was taken, and the counts in specified energy increments were determined. Composite decay curves were constructed and unfolded into components. The large detector causes counts from the interference reaction products which would appear in the 0.57-MeV annihilation peak to appear in the higher energy portion of the spectrum because of the high probability of collecting additional energy from the associated gamma rays.