ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Kenneth W. Downes, Anita Court
Nuclear Technology | Volume 3 | Number 7 | July 1967 | Pages 399-405
Technical Paper and Note | doi.org/10.13182/NT67-A27837
Articles are hosted by Taylor and Francis Online.
These studies were performed for the purpose of determining whether simple fuel alteration could lead to improved performance of neutron beam experiments at light-water-moderated reactors of the Bulk Shielding Facility (BSF) type. Thermal-neutron beams from split cores and a standard BSF core were characterized. Data were normalized to the standard core. For a split core with a 4-in. gap, the ratio of thermal neutrons-to-fast neutrons was improved by a factor of 6.6 ± 0.3 over that in a standard core; the ratio of thermal neutrons-to-gamma rays was improved by a factor of 2.9 ± 0.1 over that in a standard core. The thermal-neutron beam intensity was 67% of the value obtained from the standard core. Reactivity characteristics of split cores with a 4-in. gap were also investigated as a function of size. In an assembly with a built-in excess k of > 2.5%, it was found that one section of the core could be taken critical independent of the position of control rods in the other section.