ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. A. De Mastry
Nuclear Technology | Volume 3 | Number 2 | February 1967 | Pages 127-134
Technical Paper and Note | doi.org/10.13182/NT67-A27810
Articles are hosted by Taylor and Francis Online.
The compatibility of tungsten, W-0.9wt%Cb, W-10wt%Re, W-25wt%Re, TZM (Mo-0.5wt%Ti-0.08 wt%Zr), Mo-50wt%Re, and rhenium in static lithium was determined. Exposures were at 2500, 2800, and 3000°F for periods of 100 and 1000 h. Exposures were conducted in TZM containers for all alloys tested. The results obtained must be viewed in light of the dissimilar capsule employed. The tungsten-base materials were not attacked by lithium after 100- or 1000-h exposure at 2500°F. At 2800°F, all of the tungsten-base materials exhibited varying degrees of surface dissolution and grain-boundary penetration. TZM and Mo-50wt%Re alloys were resistant to attack by lithium at up to 3000°F for 100- and 1000-h exposure. Unalloyed rhenium underwent dissimilar metal interaction while immersed in lithium in TZM test capsules for 1000 h at 2500°F and 100 h at 3000°F. Molybdenum was transferred from the TZM corrosion capsule to the rhenium where alloying occurred.