ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. H. DeVan, C. E. Sessions
Nuclear Technology | Volume 3 | Number 2 | February 1967 | Pages 102-109
Technical Paper and Note | doi.org/10.13182/NT67-A27807
Articles are hosted by Taylor and Francis Online.
Mass transfer rates of Nb-1%Zr and D-43 (Nb-10%W-1%Zr-0.1%C) in high-temperature lithium were determined in thermal convection loops of each alloy. The loops circulated lithium for 3000h at a 1200°C maximum temperature and a 100 to 150°C ΔT. Weight change data were obtained from 58 insert specimens placed end-to-end around each loop. The oxygen content of both alloys decreased during test. Zirconium and nitrogen were transferred by the lithium from the higher-temperature to the lower-temperature loop surfaces. The extent of this mass transfer was greater in the Nb-1%Zr test and resulted in a light zirconium-nitride mass transfer deposit on the cold-leg surfaces of this alloy. Specimens at equivalent temperatures in the heater and cooler regions showed the same weight change indicating no appreciable downstream effect due to concentration changes in the lithium. Given the same absolute concentration driving force, the rate of deposition was measurably greater than the rate of dissolution; accordingly, dissolution occurred over two-thirds of the loop surfaces and deposition over the remaining one-third. An analysis of the mass transfer results for these two loops based on the assumption of a simple dissolution model showed the change in solute concentration of the lithium around the loop to be only a few parts per billion.