ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. H. DeVan, C. E. Sessions
Nuclear Technology | Volume 3 | Number 2 | February 1967 | Pages 102-109
Technical Paper and Note | doi.org/10.13182/NT67-A27807
Articles are hosted by Taylor and Francis Online.
Mass transfer rates of Nb-1%Zr and D-43 (Nb-10%W-1%Zr-0.1%C) in high-temperature lithium were determined in thermal convection loops of each alloy. The loops circulated lithium for 3000h at a 1200°C maximum temperature and a 100 to 150°C ΔT. Weight change data were obtained from 58 insert specimens placed end-to-end around each loop. The oxygen content of both alloys decreased during test. Zirconium and nitrogen were transferred by the lithium from the higher-temperature to the lower-temperature loop surfaces. The extent of this mass transfer was greater in the Nb-1%Zr test and resulted in a light zirconium-nitride mass transfer deposit on the cold-leg surfaces of this alloy. Specimens at equivalent temperatures in the heater and cooler regions showed the same weight change indicating no appreciable downstream effect due to concentration changes in the lithium. Given the same absolute concentration driving force, the rate of deposition was measurably greater than the rate of dissolution; accordingly, dissolution occurred over two-thirds of the loop surfaces and deposition over the remaining one-third. An analysis of the mass transfer results for these two loops based on the assumption of a simple dissolution model showed the change in solute concentration of the lithium around the loop to be only a few parts per billion.