ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Thomas A. Moss
Nuclear Technology | Volume 3 | Number 2 | February 1967 | Pages 71-81
Technical Paper and Note | doi.org/10.13182/NT67-A27804
Articles are hosted by Taylor and Francis Online.
Many different classes of materials are required in the development of advanced Rankine systems. These materials include nuclear fuels in the reactor, refractory metal alloys for alkali metal containment, electrical materials for the alternator, and stainless steel for the radiator. The ceramics uranium carbide and uranium dioxide are presently being considered as reactor fuels for this system. Of the numerous refractory metal alloys available, the tubing alloys FS-85 (Cb-10W-28Ta-1Zr), T-111 (Ta-8W-2Hf), and T-222 (Ta-10.4W-2.4Hf-0.01C), have survived the welding, thermal aging, and mechanical property screening tests. Based on long-time creep data, the alloys TZC (Mo-1.25Ti-0.15Zr-0.12C), TZM (Mo-0.5Ti-0.08Zr), and Cb-132M (Cb-20Ta-15W-5Mo-2Zr-0.13C) appear the best for turbine rotor applications. Long-time property data are becoming available for electrical materials for applications up to 1000°F, and new electrical materials are being developed for higher temperatures. Cermets with properties suitable for applications as alkali-metal-lubricated bearing materials are available. Stainless steel operating below 1400°F will probably be used in radiators for this system.