ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thomas A. Moss
Nuclear Technology | Volume 3 | Number 2 | February 1967 | Pages 71-81
Technical Paper and Note | doi.org/10.13182/NT67-A27804
Articles are hosted by Taylor and Francis Online.
Many different classes of materials are required in the development of advanced Rankine systems. These materials include nuclear fuels in the reactor, refractory metal alloys for alkali metal containment, electrical materials for the alternator, and stainless steel for the radiator. The ceramics uranium carbide and uranium dioxide are presently being considered as reactor fuels for this system. Of the numerous refractory metal alloys available, the tubing alloys FS-85 (Cb-10W-28Ta-1Zr), T-111 (Ta-8W-2Hf), and T-222 (Ta-10.4W-2.4Hf-0.01C), have survived the welding, thermal aging, and mechanical property screening tests. Based on long-time creep data, the alloys TZC (Mo-1.25Ti-0.15Zr-0.12C), TZM (Mo-0.5Ti-0.08Zr), and Cb-132M (Cb-20Ta-15W-5Mo-2Zr-0.13C) appear the best for turbine rotor applications. Long-time property data are becoming available for electrical materials for applications up to 1000°F, and new electrical materials are being developed for higher temperatures. Cermets with properties suitable for applications as alkali-metal-lubricated bearing materials are available. Stainless steel operating below 1400°F will probably be used in radiators for this system.