ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
C. E. Milstead, L. R. Zumwalt
Nuclear Technology | Volume 3 | Number 8 | August 1967 | Pages 495-499
Technical Paper and Note | doi.org/10.13182/NT67-A27781
Articles are hosted by Taylor and Francis Online.
The deposition of cesium on type-304 stainless steel has been measured in vacuo using 137Cs-tagged cesium. Measurements were made at 650 to 1350°F over a cesium pressure range of 2 × 10−9 to 5 × 10−6 atm using specimens that had been vacuum baked at temperatures ranging from 650 to 1870°F for 18 to 90 h. Adsorption isotherms were characterized by an empirical isotherm that shows a linear variation of log pressure with surface coverage; the heat of sorption decreases linearly with coverage. Cesium plateout levels range from 0.55 mg Cs/m2 (based on the geometric surface of the specimen) on very clean surfaces to 80 mg Cs/m2 on surfaces that were slightly oxidized. The amount of cesium deposited is shown to be directly related to the temperature and duration of the bakeout period. Isosteric heats of adsorption vary from about 22 to 98 kcal/mol over the range of coverage.