ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
John W. Prados, J. L. Scott
Nuclear Technology | Volume 3 | Number 8 | August 1967 | Pages 488-494
Technical Paper and Note | doi.org/10.13182/NT67-A27780
Articles are hosted by Taylor and Francis Online.
The Prados-Scott model for coated-particle behavior has been modified to include the effects of irradiation-induced creep on the stress-strain history of pyrolytic-carbon coatings. Calculations are performed in a stepwise fashion, with double trial-and-error iterations required for each time (or fluence) increment. Lack of accurate information on the mechanical behavior of pyrolytic carbons under irradiation still limits the quantitative applicability of the results; however, the computational sequence has been designed to permit simple updating of mechanical behavior subroutines as more reliable data are obtained. Using the best available creep information, we found that the performance of typical pyrolytic-carbon-coated particles is significantly improved by creep under conditions of irradiation which will obtain in advanced high-temperature gas-cooled reactors. On the other hand, with the high burnup rates and low fast fluences characteristic of most coated-particle proof tests, the effects of creep are small and are likely to be undetectable. In such cases, an elastic model can be used effectively to predict failure.