ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. S. Bain
Nuclear Technology | Volume 3 | Number 4 | April 1967 | Pages 240-244
Technical Paper and Note | doi.org/10.13182/NT67-A27763
Articles are hosted by Taylor and Francis Online.
UO2 fuel elements, sheathed in Zircaloy or stainless steel, were irradiated under controlled conditions to study the transfer of heat across the fuel-to-sheath interface. Variables studied were diametral clearance, heat-transfer medium, duration of irradiation, and power rating. After irradiation, fractured and polished cross sections and β autoradiographs were examined to determine the temperature distribution in the UO2. The heat-transfer coefficient h increases with increasing power per unit length. For a specified power, h increased with lower initial clearances. The use of helium instead of argon increased h especially with large clearances, but by a factor much less than the ratio of the thermal conductivities of the gases. Values of h varied widely with lead-bonding; in some positions, h was very large, whereas in others its values were less than for the argon-filled elements. Metallographic examination showed that the lead had moved from some areas of the interface, leaving gaps with poor heat transfer. In the loop elements the grain-growth pattern indicated that some of the heat passed through the lead that had flowed between the pellets. Elements evacuated just before final sealing had values of h equal to or higher than those for argon-filled elements. This is tentatively attributed to the release of natural gases (mainly hydrogen) from the U02 pellets during irradiation, as observed in auxiliary experiments.