ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
A. S. Bain
Nuclear Technology | Volume 3 | Number 4 | April 1967 | Pages 240-244
Technical Paper and Note | doi.org/10.13182/NT67-A27763
Articles are hosted by Taylor and Francis Online.
UO2 fuel elements, sheathed in Zircaloy or stainless steel, were irradiated under controlled conditions to study the transfer of heat across the fuel-to-sheath interface. Variables studied were diametral clearance, heat-transfer medium, duration of irradiation, and power rating. After irradiation, fractured and polished cross sections and β autoradiographs were examined to determine the temperature distribution in the UO2. The heat-transfer coefficient h increases with increasing power per unit length. For a specified power, h increased with lower initial clearances. The use of helium instead of argon increased h especially with large clearances, but by a factor much less than the ratio of the thermal conductivities of the gases. Values of h varied widely with lead-bonding; in some positions, h was very large, whereas in others its values were less than for the argon-filled elements. Metallographic examination showed that the lead had moved from some areas of the interface, leaving gaps with poor heat transfer. In the loop elements the grain-growth pattern indicated that some of the heat passed through the lead that had flowed between the pellets. Elements evacuated just before final sealing had values of h equal to or higher than those for argon-filled elements. This is tentatively attributed to the release of natural gases (mainly hydrogen) from the U02 pellets during irradiation, as observed in auxiliary experiments.