ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Gordon M. Lodde, Beverly A. Good, Diane M. Surgeoner
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 535-544
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27750
Articles are hosted by Taylor and Francis Online.
As a result of the March 28, 1979, accident at Three Mile Island Unit 2 (TMI-2), significant quantities of fission gases and volatile radionuclides, primarily radioiodine, were released into the enclosed reactor building (RB) atmosphere from the damaged reactor core. Approximately 1 yr after the accident, air samples of the RB atmosphere showed that 85Kr was the principle remaining radionuclide. The TMI-2 controlled venting experience proved that radioactive gases released during an accident causing significant core damage can be safely disposed of through atmospheric dispersion after a suitable period for radioactive decay of short-lived radioactive contaminants. The actions taken by the use of ice vests and the installation of air chillers provided a tolerable working environment within the RB for workers dressed in protective clothing. The contribution of the doses due to internally deposited radioactivity has been negligible when compared to those for radiation sources outside the body. It is clear that uptakes of radioactive material into the body have not been significant at TMI-2.