ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Marzano sworn in as NRC commissioner
Marzano
Matthew Marzano became the newest member of the Nuclear Regulatory Commission when he was officially sworn into office by chair Christopher Hanson this week.
The nuclear engineer and former reactor operator was confirmed last month in a 50–45 vote in the U.S. Senate. Last July, President Biden nominated Marzano to serve on the commission, which is tasked with formulating policies, developing regulations, issuing orders, and resolving legal matters.
Marzano’s term expires June 30, 2028.
Paul J. Babel, Raymond E. Lancaster, Carl H. Distenfeld
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 450-456
Technical Paper | TMI-2: Health Physics and Environmental Release / Radioactive Waste Management | doi.org/10.13182/NT89-A27736
Articles are hosted by Taylor and Francis Online.
Sample and measurement data used to determine the quantity of radioactive material in the concrete walls and floor of the Three Mile Island Unit 2 (TMI-2) reactor building (RB) basement are given. The layout of the RB basement, types of concretes and surface coatings, measurement methods, and final assessment are described. It was found that the radioactive material (primarily 137Cs) did not significantly penetrate into poured concrete walls and floors, but did penetrate completely through concrete block. The activity distribution in the walls varied strongly with elevation above the floor. Of the estimated 975 (±25%) TBq (26400G) in the RB basement, ∼72% is contained in the concrete block, ∼23% in the low-compression-strength concrete walls, ∼2% in the low-compression-strength concrete floor, and ∼3% in the high-compression-strength walls.