ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James E. Tarpinian
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 429-432
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27733
Articles are hosted by Taylor and Francis Online.
The dose reduction objectives for the Three Mile Island Unit 2 reactor building (RB) were designed to lower the dose rates in working areas so that the total collective dose to workers would be as low as reasonably achievable. As part of these objectives, a large-scale effort was devoted to the decontamination of RB surfaces. The presence of very high removable surface contamination levels, sometimes in excess of 1.7 × 103 Bq/cm2 (4.6 µCi/100cm2), contributed to high airborne radioactivity conditions, which necessitated the extensive use of respiratory protection. It became an objective of the decontamination program, therefore, to reduce the removable contamination levels to such an extent that the use of respirators could be reduced or even eliminated. The progress of the decontamination program was hampered when it was discovered that large areas of the RB were becoming recontaminated. Recontamination rates were measured to be ∼1.5 Bq/cm2·day−1 (4.1 × 10−3 µCi/100cm2·day−1). After a series of tests, it was determined that the air handling systems in the RB were distributing radioactivity from highly contaminated surfaces. Cascade impactor studies of the aerosols indicated a bimodal distribution of particle sizes. Particles >20-µm activity median aerodynamic diameter (AMAD) accounted for 30% of the collected activity and particles <5-µm AMAD were associated with 60% of the activity. Examinations by optical and electron microscopy and Raman spectroscopy helped determine that the larger particles were organic dusts associated with the air handling systems and the smaller particles were associated with the boric acid dissolved in decontamination water. Reducing the airflow through the air cooler fans and restricting the airflow to the highly contaminated D-rings helped to reduce the recontamination to 4 × 10−2 Bq/cm2·day−1 (1.1 × 10−4 µCi/100cm2·day−1). Subsequently, the recontamination of surfaces due to airborne vectors ceased to be an operational concern. Further decontamination of the floors enabled a significant reduction in the use of respiratory protection equipment.