ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Carl H. Distenfeld, Barry H. Brosey, Hiroo Igarashi
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 424-428
Technical Paper | TMI-2: Health Physics and Environmental Release / Nuclear Safety | doi.org/10.13182/NT89-A27732
Articles are hosted by Taylor and Francis Online.
The method used to select decontamination priorities for the Three Mile Island Unit 2 (TMI-2) reactor building is systematic, but costs in personnel exposure and time must be borne. One way of minimizing exposure is to define and treat the surface sources that are important contributors to the collective dose to the cleanup personnel. Surface characteristics can then be determined and decontamination techniques developed to match the removal requirements. At TMI-2, a fast sorting technique was developed and used to prioritize surfaces for exposure reduction. A second quick sort can then be used to determine the next generation of surface characterization, decontamination method selection, and performance. The quicksort method developed is based on the Eberline HP 220A directional survey system. The angular response of the HP 220A probe approaches 2π sr and allows toward and away type measurements. Sources distributed over 4π sr are difficult to define with this system. Angular differentiation was improved to ∼π/2 sr by redesigning the probe shield. The change allows unambiguous six-direction measurements (up, down, front, rear, right, and left) with practically no angular overlap or exclusion. A simple, lightweight stand was used to establish an angular reference for the rectangular packaged probe. The six surface planes of the rectangle work with the angular reference to establish the six viewing angles.