ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Andrew P. Hull
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 383-394
Technical Paper | TMI-2: Health Physics and Environmental Release / Radiation Biology and Environment | doi.org/10.13182/NT89-A27728
Articles are hosted by Taylor and Francis Online.
Although the advance planning for it was minimal by today’s standards, a large integrated federal and state environmental monitoring response was made to the Three Mile Island Unit 2 accident. In particular, major resources were committed by the U.S. Department of Energy (DOE). They include the Brookhaven National Laboratory-based Radiological Assistance Program, the Atmospheric Release Advisory Capability, and the Aerial Measurements System, with backup personnel from other DOE national laboratories. Additional resources were provided by the Environmental Protection Agency. The monitoring effort included plume tracking, field environmental monitoring and sampling, sample analysis, and dose assessment. The ranges of the installed plant monitors having been exceeded, these data were important for establishing the nuclides and their quantities in the daily releases from the plant during the first few weeks after the accident. In particular, it was established that the continuing releases consisted almost entirely of radiogases, with very small quantities of radioiodines. The highest measured ground-level dose rate was 1.3 × 102 C/kg (50 mR/h) and the largest concentration of 131I <3.7 × 10−6 Bq/cm3 (<1 × 10−10 µCi/cm3). From DOE population dose assessment, the highest individual dose appears to have been <1 mSv/h (<100 mR/h) and the total population dose 20 person-Sv (∼2000 person-rems). This largely ad hoc response became the basic model for today’s Federal Radiological Monitoring and Assessment Program, which would be put into operation should a major accident occur at a U.S. nuclear facility.