ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Andrew P. Hull
Nuclear Technology | Volume 87 | Number 2 | October 1989 | Pages 383-394
Technical Paper | TMI-2: Health Physics and Environmental Release / Radiation Biology and Environment | doi.org/10.13182/NT89-A27728
Articles are hosted by Taylor and Francis Online.
Although the advance planning for it was minimal by today’s standards, a large integrated federal and state environmental monitoring response was made to the Three Mile Island Unit 2 accident. In particular, major resources were committed by the U.S. Department of Energy (DOE). They include the Brookhaven National Laboratory-based Radiological Assistance Program, the Atmospheric Release Advisory Capability, and the Aerial Measurements System, with backup personnel from other DOE national laboratories. Additional resources were provided by the Environmental Protection Agency. The monitoring effort included plume tracking, field environmental monitoring and sampling, sample analysis, and dose assessment. The ranges of the installed plant monitors having been exceeded, these data were important for establishing the nuclides and their quantities in the daily releases from the plant during the first few weeks after the accident. In particular, it was established that the continuing releases consisted almost entirely of radiogases, with very small quantities of radioiodines. The highest measured ground-level dose rate was 1.3 × 102 C/kg (50 mR/h) and the largest concentration of 131I <3.7 × 10−6 Bq/cm3 (<1 × 10−10 µCi/cm3). From DOE population dose assessment, the highest individual dose appears to have been <1 mSv/h (<100 mR/h) and the total population dose 20 person-Sv (∼2000 person-rems). This largely ad hoc response became the basic model for today’s Federal Radiological Monitoring and Assessment Program, which would be put into operation should a major accident occur at a U.S. nuclear facility.