ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Richard L. Moore, Daniel W. Golden, E. L. Tolman
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 990-1004
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27691
Articles are hosted by Taylor and Francis Online.
A two-dimensional finite element model was developed to simulate the Three Mile Island Unit 2 core heatup between 174 and 224 min and the subsequent cooling of the consolidated core region after the relocation of ≃25 tonnes of core material to the lower plenum of the reactor at 224 min. The model considered heat losses at the surfaces of the degraded core zone, core material melting, convective heat transfer within the molten pool, and decay heat reduction from the release of the volatile fission products. The results obtained from the model indicate that at least 17% of the consolidated core material must have been molten at 174 min in order to generate the ≃25 tonnes of core material that relocated at 224 min. The cooldown calculation indicated that as long as the core remained covered with coolant, the core configuration would remain thermally stable with pool cooldown beginning at ∼324 min after the initiation of the accident.