ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Pui Kuan, James L. Anderson, E. L. Tolman
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 977-989
Late Paper | TMI-2: Decontamination and Waste Management / Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A27690
Articles are hosted by Taylor and Francis Online.
Thermal interaction during the Three Mile Island Unit 2 2-B coolant pump transient is considered as an explanation of the partial melting of the plenum assembly. The primary system pressure response is used to calculate the energy transferred from the reactor core to the coolant and the steam generation rate during the pump transient. The steam generation rate is then used to calculate the heating of the plenum assembly. An energy balance indicates that exothermic oxidation of Zircaloy by steam must have taken place. In calculations of plenum assembly heating, the thermal emissivity of steam is reduced to simulate the effect of hydrogen generated during the oxidation process. It is determined from the calculations that in the presence of an appreciable amount of hydrogen (∼60%), only the thin structures at the lower end of the plenum assembly would have melted, while the relatively thick structures would have been partially ablated. These results are consistent with the observed damage.