ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Yasushi Nomura, James L. Anderson
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 912-925
Technical Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27685
Articles are hosted by Taylor and Francis Online.
The refill phenomena occurring from 200 to 217 min of the Three Mile Island Unit 2 accident were analyzed by using measurement data including the reactor coolant system (RCS) pressure and the pressurizer level. At 200 min, the high-pressure injection (HPI) system began to inject water into the RCS, resulting in a primary system depressurization due to steam condensation; and the pressurizer water drained into the reactor vessel, increasing the liquid level at the core. It is believed that the core was completely covered by water by ∼207 min, when the pressurizer level decrease and the RCS depressurization stopped. Continued HPI resulted in increasing hot-leg water levels; and the pressurizer level began to increase at ∼210 min, when water reached the level of the surgeline entrance to the hot leg. Analysis of the refill assuming uniform liquid levels in the RCS fails to predict the observed phenomena. A set of equations describing the refill phenomena and accounting for compression of noncondensable gases has been derived from theoretical considerations, and solutions for water levels throughout the RCS have been obtained to correctly predict the phenomena occurring during the refill period.