Unlike computer simulation of an event, forensic engineering is the evaluation of recorded data and damaged as well as surviving components after an event to determine progressive causes of the event. Such an evaluation of the 1979 Three Mile Island Unit 2 accident indicates that gas began accumulating in steam generator A at 6:10, or 130 min into the accident and, therefore, fuel cladding ruptures and/or zirconiumwater reactions began at that time. Zirconium oxidation/hydrogen generation rates were highest (∼70 kg of hydrogen per minute) during the core quench and collapse at 175 min. By 180 min, over 85 % of the hydrogen generated by the zirconium-water reaction had been produced, and ∼400 kg of hydrogen had accumulated in the reactor coolant system. At that time, hydrogen concentrations at the steam/water interfaces in both steam generators approached 90%. By 203 min, the damaged reactor core had been reflooded and has not been uncovered since that time. Therefore, the core was completely under water at 225 min, when molten core material flowed into the lower head of the reactor vessel.