ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
James O. Henrie
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 729-736
Technical Paper | TMI-2: Decontamination and Waste Management / Radioactive Waste Management | doi.org/10.13182/NT89-A27665
Articles are hosted by Taylor and Francis Online.
Fission products were removed from contaminated water at Three Mile Island (TMI) by adsorbing them on mixed zeolites in stainless steel vessels. Hydrogen and oxygen gases were generated in those vessels by radiolysis of water at rates up to ∼ 70 ℓ/week. Palladium-on-alumina catalyst pellets were added remotely to each of the vessels to recombine the gases back to water and, thereby, allow safe transport and storage. After the vessels were transported to Hanford, Washington, monitoring showed that >99% of the gases were being recombined and that minor leaks allowed vessel pressures to stabilize at ∼110 kPa (16 psi) absolute. Catalyst beds were designed and built into the TMI core debris canisters to remove the hydrogen and oxygen gases expected (∼20 ℓ/week) to be generated. Tests identified appropriate catalyst types and established catalyst bed design parameters. After transport to the Idaho National Engineering Laboratory, analysts verified that hydrogen-oxygen concentrations were well below flammable limits and, therefore, were safe. Federal regulations for the transport of wastes subject to hydrogen gas generation have been established as a result of the transport of TMI wastes. Those regulations ensure nonflammable conditions by requiring that either the oxygen concentration or the hydrogen concentration remains below 5%. Those requirements appear to be appropriate. Stricter requirements to ensure that hydrogen concentrations will not exceed 5%, regardless of oxygen concentrations, would appear to be inappropriate.