ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Sidney Langer
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 294-297
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27656
Articles are hosted by Taylor and Francis Online.
The tacit assumption in early severe accident studies was that the melting of a reactor core would result in failure of the reactor pressure vessel and eventual failure of the containment building and release of fission products to the environment. This assumption was shown to be wrong by the Three Mile Island Unit 2 (TMI-2) accident in which 50% of the core melted, yet fission product release to the environment was insignificant (<5% of the noble gases). Termination of the accident and survival of the reactor vessel is attributed to the presence of water in the vessel. The quantity of water required to cool the molten core and reestablish stable core cooling is calculated. These calculations and the TMI-2 experience imply that future accident management strategies that emphasize restoration of the cooling water supply can terminate advanced severe accidents and avoid pressure vessel failure.