ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
David A. Petti, James P. Adams, James L. Anderson, Richard R. Hobbins
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 243-263
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27652
Articles are hosted by Taylor and Francis Online.
An analysis of fission product release during the Three Mile Island Unit 2 (TMI-2) accident has been performed to provide an understanding of fission product behavior that is consistent with both the best-estimate accident scenario and fission product results from the sample acquisition and examination efforts. “Firstprinciples” fission product release models are used to describe release from intact, disrupted, and molten fuel during the various phases of the TMI-2 accident. Extensive gaseous and volatile fission product release is calculated to have occurred, with local regions of the core experiencing up to 100% release. Diffusion is calculated to have dominated release during the initial core heatup, while bubble coalescence and rise dominated release from the large consolidated region of molten material. The calculations are generally consistent with fission product retention data from upper and lower plenum debris bed samples. An exception to this is the small retention of cesium in the lower plenum samples, suggesting that cesium may have been in a low-volatile chemical form. The small release fractions measured for the less volatile fission product oxides (SrO, Eu2O3, and Ce2O3) are calculated to have resulted from the low partial pressures of these species in the melt coupled with the low surface-to-volume ratio of the consolidated melt region. Metallic species (ruthenium and antimony) are thought to be associated with metallic core structural material debris.