ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Allan Brown, Garry J. McIntyre, Christian Gräslund
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 137-145
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27643
Articles are hosted by Taylor and Francis Online.
Three samples from the ceramic melt, the lower crust, and the lower plenum of the previously molten part of the Three Mile Island Unit 2 core have been analyzed by X-ray diffraction to determine the compounds formed as a result of the accident in 1979. Supporting analyses were performed by gamma spectroscopy and particle-induced X-ray emission (PIXE) to provide information on radioactive nuclide content at trace levels and on elements with Z> Mat more significant levels. The analyses show the presence of the following major phases: (a) an inhomogenous solid solution based on UO2, probably containing zirconium as a substituent for uranium and with additional oxygen giving a superstoichiometric composition; (b) ZrO2 in the baddeleyite modification, which is stable below 1200 K, and tetragonal ZrO2, which is normally stable between 1200 and 1600 K; and (c) nickel, chromium ferrite [(Ni,Fe)(Fe,Cr)2O4]. Lattice parameter measurements indicate that both forms of ZrO2 contain UO2 in solid solution and the parameter of the ferrite phase is consistent with substitution of aluminum for part of the chromium and iron content. The PIXE measurements show that the nickel content of the ferrite is low. The distribution of these phases in the samples has been studied by making quantitative measurements on diffraction patterns from a total of 34 X-ray specimens. Differences between the three samples are discussed in terms of the equilibrium diagram of the UO2-ZrO2 system. The sample from the lower plenum has evidently been subjected to rapid cooling. The temperature history of the sample from the lower crust has been such that cooling was slow enough to bring about nearly complete equilibrium of the phases. The sample from the ceramic melt represents an intermediate case with simultaneous heating at one surface and cooling at the other.