ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Allan Brown, Garry J. McIntyre, Christian Gräslund
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 137-145
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27643
Articles are hosted by Taylor and Francis Online.
Three samples from the ceramic melt, the lower crust, and the lower plenum of the previously molten part of the Three Mile Island Unit 2 core have been analyzed by X-ray diffraction to determine the compounds formed as a result of the accident in 1979. Supporting analyses were performed by gamma spectroscopy and particle-induced X-ray emission (PIXE) to provide information on radioactive nuclide content at trace levels and on elements with Z> Mat more significant levels. The analyses show the presence of the following major phases: (a) an inhomogenous solid solution based on UO2, probably containing zirconium as a substituent for uranium and with additional oxygen giving a superstoichiometric composition; (b) ZrO2 in the baddeleyite modification, which is stable below 1200 K, and tetragonal ZrO2, which is normally stable between 1200 and 1600 K; and (c) nickel, chromium ferrite [(Ni,Fe)(Fe,Cr)2O4]. Lattice parameter measurements indicate that both forms of ZrO2 contain UO2 in solid solution and the parameter of the ferrite phase is consistent with substitution of aluminum for part of the chromium and iron content. The PIXE measurements show that the nickel content of the ferrite is low. The distribution of these phases in the samples has been studied by making quantitative measurements on diffraction patterns from a total of 34 X-ray specimens. Differences between the three samples are discussed in terms of the equilibrium diagram of the UO2-ZrO2 system. The sample from the lower plenum has evidently been subjected to rapid cooling. The temperature history of the sample from the lower crust has been such that cooling was slow enough to bring about nearly complete equilibrium of the phases. The sample from the ceramic melt represents an intermediate case with simultaneous heating at one surface and cooling at the other.