ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Howard F. Bauman, Paul R. Kasten
Nuclear Technology | Volume 2 | Number 4 | August 1966 | Pages 287-293
Technical Paper and Note | doi.org/10.13182/NT66-A27518
Articles are hosted by Taylor and Francis Online.
Thermal- and intermediate-energy molten-salt breeder reactors appear capable of fuel doubling times less than 20 years and fuel-cycle costs under 0.4 mill/kWh. These reactors are fueled with circulating molten salts consisting of the fluorides of thorium, uranium, lithium, and beryllium. Three reactor concepts were analyzed; the first two were graphite-moderated thermal breeders. In the first of these, the fissile and fertile materials were kept separated by graphite tubes in the core; in the second, the fissile and fertile materials were included in a single salt stream. In the third concept, an intermediate-energy breeder, the core was an unmoderated salt containing both fissile and fertile materials. The reactors were optimized for minimum fuel-cycle cost and maximum annual fuel yield. The results showed that each concept was capable of a low fuel-cycle cost and a short doubling time; however, the major development problems are different for each concept.