ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
W. Bennett Lewis
Nuclear Technology | Volume 2 | Number 2 | April 1966 | Pages 171-181
Technical Paper | doi.org/10.13182/NT66-A27498
Articles are hosted by Taylor and Francis Online.
Fuel may be designed for fission gas containment within the fuel clad or for venting, also to survive possible ruptures of the clad. Fission gas behavior varies widely with the UO2 starting material and, like the baking of bread, with its irradiation history of time and temperature. Below 1000° C, most gas remains trapped; between 1000 and 1800° C, most gas becomes trapped at some time in small closed pores. Expansion of the pores causes swelling. Escape from the pores is by cracking or by radiation-induced reabsorption. Fuel rods are commonly designed with a plenum to collect gas, but the high density of pores and plasticity of the oxide delays or prevents much of the gas from reaching the plenum. For irraditions up to 12 000 MWd/t, satisfactory designs have been achieved without a plenum. Above 1800° C, most gas escapes, but the process of escape is not well established and requires consideration in each case by the design engineer. Available knowledge most relevant to design is briefly reviewed and illustrated in photographs and graphs.