ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
K. Lassmann
Nuclear Technology | Volume 40 | Number 3 | October 1978 | Pages 321-328
Technical Paper | Material | doi.org/10.13182/NT78-A26730
Articles are hosted by Taylor and Francis Online.
The state-of-the-art in fuel rod structural analysis is discussed, and possible future developments in this field are outlined. The conclusion is drawn that the most important goal for future research is a deeper understanding of material behavior. It is suggested that a strategy of successive use of diverse models appropriate to the varying degrees of theoretical sophistication be followed in fuel rod structural analysis: Preliminary work should be an analysis of the integral fuel rod with one-dimensional models, followed by local two-dimensional analyses. Finally, the deterministic analyses should be augmented by probabilistic work. All these modeling approaches are inevitably complementary in exhaustive fuel rod analysis, but they are, despite the tremendous theoretical efforts, no substitute for fuel rod performance tests. Nevertheless, analytical modeling will remain an indispensable tool for a long time to come, since with this theoretical background, the interpretation of experimental results is facilitated, and a better insight into fuel rod behavior is provided.