ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Theodore M. Besmann, Terrence B. Lindemer
Nuclear Technology | Volume 40 | Number 3 | October 1978 | Pages 297-305
Technical Paper | Fuel | doi.org/10.13182/NT78-A26727
Articles are hosted by Taylor and Francis Online.
Equilibrium thermodynamic calculations were performed on the Cs-U-Zr-H-I-O system that is assumed to exist in the fuel-cladding gap of light water reactor fuel under in-reactor, steam, and 50% steam—50% air conditions. The in-reactor oxygen potential is assumed to be controlled by either UO2+x + Cs2UO4 or Zr + ZrO2. The important condensed phases in-reactor are UO2+x, CS2UO4, and CsI, and the major gaseous species are Cs, Cs2, CsI, and Cs2I2. The presence of steam does not alter these species, although CsOH also becomes a major gaseous species. In a 50% steam—50% air mixture, the equilibrium condensed phases are U3O8 or UO3 and Cs2U15O46. Under a nonequilibrium situation where zirconium metal can react with iodine, ZrI3 or liquid ZrI2 is present, and the gaseous species ZrI3 and ZrI4 have large partial pressures.