ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Richard N. Oehlberg, Harold H. Scott
Nuclear Technology | Volume 40 | Number 3 | October 1978 | Pages 248-260
Technical Paper | Reactor | doi.org/10.13182/NT78-A26723
Articles are hosted by Taylor and Francis Online.
A partitioning of a hypothetical pressurized water reactor loss-of-coolant accident time history into pre-reflood and reflood periods allowed a study of reflood parameter effects without a well-defined knowledge of the complex blowdown history. Values for the initial reflood fuel rod temperature profiles, reflood cladding-to-coolant heat transfer coefficient (HTC), decay heat, and initial reflood hot node hoop strain were chosen to parametrically describe the initial reflood condition of the fuel rod. The sensitivity of the reflood peak cladding temperature to decay heat was constant; the sensitivity to the gap conductance was only a function of the initial reflood hoop strain. The sensitivity to decay heat and the reflood HTC ramp was greater for the lower initial reflood centerline temperature case.