ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Marilyn M. Osterhout
Nuclear Technology | Volume 40 | Number 2 | September 1978 | Pages 159-169
Technical Paper | Tutorial Materials/Design Interaction in Nuclear System / Reactor | doi.org/10.13182/NT78-A26712
Articles are hosted by Taylor and Francis Online.
A water-to-sodium leak detection system was installed at the Experimental Breeder Reactor II in April 1975. The system is designed for early detection of steam generator leaks, using hydrogen meters at the sodium outlets of the evaporators and superheaters. The leak detectors operate by measuring the rate of diffusion of hydrogen from the liquid sodium through a nickel membrane into a dynamic vacuum system. The advantages of this detection system are rapid response time, high sensitivity, stability, and reliability. The system was operated on an experimental basis for the first two years. During this period, data were obtained on detector stability, reliability, maintenance needs, computer interface requirements, calibration, and background hydrogen-level fluctuations. A generic defect in the original detectors was also discovered, requiring redesign of the units. When the new units were installed and proven to be reliable, the system was made fully operational. The data from the hydrogen meters are now used as the primary basis for detection of water-to-sodium leaks.