ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Shunsuke Uchida, Motoaki Utamura, Hideo Yusa, Hideo Maki
Nuclear Technology | Volume 40 | Number 1 | August 1978 | Pages 79-88
Technical Paper | Fuel | doi.org/10.13182/NT78-A26701
Articles are hosted by Taylor and Francis Online.
To improve the efficiency of in-core wet sipping leaker detection, a warm water injection method was developed. The method was characterized by pouring warm water into the channel box through the sipper cap and replacing all the water originally present with the poured water. Basic experiments were performed to determine the efficiency of the method. Mockup experiments were undertaken to confirm this and to ascertain the effects of operational conditions on the efficiency. These were done by the sipping procedures by means of a facility that included a full-scale 8 × 8 simulated fuel assembly. It was demonstrated that (a) the efficiency of detection for bottom leaks increased about a hundred times over the commonly used method, and (b) the increase in efficiency came from flattening the temperature distribution along the axial direction and exciting the natural convection flow in the whole assembly to promote the fission product transfer. Optimal operational conditions for the method were also proposed as follows: