ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. M. Carroll, R. B. Perez, O. Sisman
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 268-276
Technical Paper and Note | doi.org/10.13182/NT68-A26324
Articles are hosted by Taylor and Francis Online.
For in-pile sweep-gas experiments it is sometimes necessary to deduce the time-dependent release rate of a radioactive gas from a specimen by measurements made at some point downstream. An experimental method to measure the amount of dispersion of the radioactive gas in the sweep gas is described. By this method, correction factors can be applied to a measured wave shape to obtain the generated wave shape. A theoretical model, assuming axial turbulent flow of the sweep gas with a flat radial distribution, has been developed. Application of the model involves an experimentally determined parameter “a” for the particular sweep-gas system used. The agreement between the experiment and the theoretical model is excellent.