ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. Malvyn McKibben
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 260-267
Technical Paper and Note | doi.org/10.13182/NT68-A26323
Articles are hosted by Taylor and Francis Online.
Certain light elements that undergo nuclear reactions with alpha particles can be identified in alpha emitters such as 238PuO2 by analysis of the resulting radiation—specifically, of gamma photons, or “reaction gammas.” Gamma spectrometry has been used successfully for this purpose on production lots of 238PuO2 from which neutron emission rates were abnormally high because of (α,n) reactions with impurities. To establish a base for this type of analysis, reaction gamma spectra for 14 light elements were obtained by measuring gamma spectra from samples of 238PuO2 before and after addition of known quantities of the elements. Emission rates of major gammas of each element, in γ/min per gram of 238Pu, were also developed from these standard mixtures. A catalog of principal reaction gammas from each element was assembled. Although absolute emission rates of reaction gammas were obtained, this technique is only semiquantitative because the gamma yield is highly dependent on a number of variables, including the incident alpha-particle energy and the distribution of the impurity element in the sample.