ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Raymond R. Edwards
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 245-259
Technical Paper and Note | doi.org/10.13182/NT68-A26322
Articles are hosted by Taylor and Francis Online.
Implementation of safeguards against diversion of special nuclear materials from peaceful uses to weapons often requires nondestructive assay of fuel materials at various stages in the fuel cycle to obtain information on fissile material burnup, detailed fuel history, and content of 235U, 239Pu, and 233U. Past, current, and proposed efforts to elicit the required information have included direct gamma-ray spectrometry of fuel materials (by means of scintillation and, more recently, solid-state detectors); indirect gamma-ray spectrometry (magnetic analysis of external conversion electron spectra, Compton spectrometry by semiconductor detection pulse-height analysis); x-ray emission spectrometry; activation analysis of stable (or very long-lived) fission products; use of external monitors for neutron flux and/or fission and breeding rates; fast/slow neutron-fission counters; neutron transmission measurements; fission-neutron counting and spectrometry (prompt and delayed); photonuclear response measurements; and calorimetry. The various methods are described and compared for accuracy and precision, for the kind of information elicited, and for probable cost and portability of equipment required.