ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Joseph C. Stachew
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 206-216
Technical Paper and Note | doi.org/10.13182/NT68-A26318
Articles are hosted by Taylor and Francis Online.
The uranium and plutonium isotopic distributions of 45 irradiated fuel rods of natural uranium dioxide are compared to theoretical predictions made using three-dimensional P-1 neutron diffusion techniques. The calculations are different in that normalization to experimental results is made only by use of the total core energy output and measured critical rod-bank heights. This is in contrast to normalizing each individual fuel-rod burnup to the experimental value and then investigating resultant isotopic distributions in the rod. The comparison indicates good agreement but identifies the need for a spatial spectrum variation of the 238U epithermal resonance absorption cross section and improved time -dependence of the 238U and 239Pu cross sections.