ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Tsutomu Yokoyama, Toshiyuki Tamura
Nuclear Technology | Volume 57 | Number 3 | June 1982 | Pages 372-388
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A26304
Articles are hosted by Taylor and Francis Online.
Calculations have been made to investigate the dependence of the primary neutron emission rate (the neutron source strength) of spent boiling water reactor (BWR) fuel assemblies on the irradiation parameters: initial 235U enrichment, void fraction, power density, and operation history. A BWR lattice cell calculation code, which was verified by experiments, has been used to calculate the buildup of transuranium isotopes. The neutron emission rate was split into three components: 242Cm, 244Cm, and other nuclides. The effects of the irradiation parameters have been studied for each of the three components. The energy spectra of the primary neutrons emitted by the irradiated fuel have been calculated parametrically. The calculations have elucidated the neutron emission characteristics of the spent BWR fuel assemblies and provided the basic information to be used for:1. the neutron-shielding design for spent-fuel storage facilities and transportation casks2. the feasibility study of the startup of a BWR without radioisotope neutron source3. the application of passive neutron method to the nondestructive determination of burnup and plutonium contents in spent BWR fuels.