ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
David J. Dixon, Mohamed A. Elmaghrabi, Ian C. Rickard
Nuclear Technology | Volume 57 | Number 2 | May 1982 | Pages 228-233
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A26285
Articles are hosted by Taylor and Francis Online.
With the everchanging economic and licensing environment of the nuclear fuel cycle, Combustion Engineering (C-E) considered reducing the fuel pellet diameter of its current fuel rod designs. However, the economic incentive to reduce the diameter, considering the uncertainty of the assumptions used for the economics analysis, is at best very small. This together with the negative aspects of reduced safety margins, the increased number of discharge fuel assemblies that have to be stored or disposed of each year, and the change from a design of proven reliability all yield the conclusion that the current fuel pellet diameters used by C-E should not be changed. The conclusion differs from that reported by others as a result of the use of more sophisticated neutronics calculations and more realistic definition of fuel cycle cost parameters. This analysis was performed using C-E’s most advanced neutronics model, DIT. The model was applied to high burnup fuel (48 MWd/kgU) and cores operating on 18-month cycles. To maintain constant batch average discharge burnup and constant energy production, the number of assemblies in each reload batch was increased as the fuel pellet radius decreased. Finally, the fabrication and disposal price was adjusted as the assembly loading decreased such that the cost to fabricate or dispose of each assembly was kept constant.