ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michael S. Peck, Tushar K. Ghosh, Mark A. Prelas
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 351-363
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A24991
Articles are hosted by Taylor and Francis Online.
The sulfur-iodine and hybrid-sulfur thermochemical cycles that can utilize high-temperature heat from advanced nuclear reactors have shown promise economically for large-scale production of hydrogen from water. Both of these cycles employ a step to decompose sulfuric acid to sulfur trioxide by heating it above 723 K followed by the catalytic decomposition to sulfur dioxide at a temperature >1073 K depending on the catalyst used. Successful commercial implementation of these technologies is dependent on the development of suitable materials for use in these highly corrosive environments. In this study, a laboratory-scale superheater/decomposer was constructed and used to study the corrosion resistance of natural diamond, synthetic diamond films treated with boron and titanium, silicon carbide, quartz, aluminum nitride, INCONEL, and platinum to sulfuric acid and SO3. However, it appeared that some of these materials catalyzed SO3 to SO2 and O radicals, which also attacked these materials, increasing their corrosion rates.Natural diamonds, synthetic diamond films (treated with boron and titanium), aluminum nitride, and INCONEL have unacceptable corrosion rates above 873 K. Both the boron- and titanium-treated diamond samples completely disintegrated at temperatures >973 K. The high corrosion rates may have resulted from carbons in diamond having a higher preference for oxygen free radicals that were formed during the decomposition process. Oxygen free radical concentrations increased as a function of the increasing temperature.The present study showed that silicon carbide had the best corrosion resistance over the range of conditions at which the superheater would operate. Quartz was also corrosion resistant but became brittle after 30 h of exposure to this harsh environment. Platinum, used as a catalyst to reduce the decomposition temperatures, exhibited almost no corrosion when exposed to decomposition products. However, platinum did corrode when exposed to liquid sulfuric acid at high temperatures.