ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Gwang Seop Son, Dong Hoon Kim, Choul Woong Son, Joon Kyo Kim, Jae Hyun Park
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 297-309
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-A24987
Articles are hosted by Taylor and Francis Online.
This paper presents the architecture of the Safety Programmable Logic Controller (SPLC) for advanced nuclear safety systems and describes the evaluation and analyses of reliability for the SPLC using the Markov model. The SPLC is designed to have structural flexibility for users to select module redundancy according to the requirements of specific applications. To be used for the nuclear safety system, the SPLC is configured for multiple modular redundancy composed of dual modular redundancy and triple modular redundancy. Markov models were developed for three types of existing safety-grade Programmable Logic Controller (PLC) architectures and the SPLC, and the reliabilities of the architectures were then evaluated and analyzed using the models. The results show that the reliability of SPLC is up to 1.6 times better than those of the three PLC architectures, and the mean time to failure (MTTF) of the SPLC is up to 22 000 h better than those of the three. From the reliability analyses, the failure rate of each module in the SPLC should be <2 × 10-4 /h, and the MTTF average increase rate depending on the fault coverage factor (FCF) increment, i.e., MTFF/FCF, is 4 months/0.1.