ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Owen Leslie Deutsch, Brian Winston Murray
Nuclear Technology | Volume 26 | Number 3 | July 1975 | Pages 320-339
Technical Paper | Radioisotope | doi.org/10.13182/NT75-A24433
Articles are hosted by Taylor and Francis Online.
The pathology of malignant brain tumors often precludes successful treatment by surgery and standard radiation therapy. Boron neutron-capture therapy consists of the selective loading of tumor with 10B and subsequent irradiation with a thermal or epithermal neutron field. The neutron-capture reaction 10B(n,α)7Li produces high-linear-energy-transfer-charged particles that deposit energy principally within the abnormal tissue that contains a high 10B concentration. Constraints on this therapy modality are imposed by radiation effects in normal tissue from thermal neutrons, neutron-induced gamma rays, fast-neutron and gamma-ray beam contaminants, and also from the 10B(n,α)7Li reactions in circulating blood. The ANDY general geometry Monte Carlo code is used to calculate the space-energy distribution of all pertinent components of the dose within a simple head phantom in an idealized therapy configuration at the Massachusetts Institute of Technology Research Reactor. The effects of 10B concentration, gamma-ray contamination of the therapy beam, thermal neutron beam aperture, and surgically formed re-entrant cavities are examined with respect to several clinical criteria for therapeutic efficacy. It is found for the model considered that the maximum effective relaxation length for the thermal neutron fluence is 1.6 to 1.8 cm, which is 30 to 40% lower than the infinite medium relaxation length, and thereby indicates the importance of multidimensional boundary effects in this calculation. The fluence-depth characteristic was verified by an experimental irradiation of a tis-sue-equivalent head phantom with re-entrant cavityy and excellent agreement was observed between measured and calculated results. It was also found that the gamma-ray beam contaminant is not necessarily deleterious to therapeutic efficacy, that a larger aperture thermal neutron beam improves the dose field with respect to some criteria but at the expense of others, and that plausible size variations in the surgically formed cavity do not change the character of the dose field. As a further refinementy a Monte Carlo microdosimetry model is developed and applied to the problem of radiation effects on the cerebral microvasculature by 10B capture reactions in the circulating blood. Qualitative predictions of this model correlate positively with previous clinical experience.