ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
L. W. Ward
Nuclear Technology | Volume 26 | Number 3 | July 1975 | Pages 247-253
Technical Paper | Reactor | doi.org/10.13182/NT75-A24426
Articles are hosted by Taylor and Francis Online.
The behavior of the primary system coolant in a pressurized water reactor during a small-break loss-of-coolant accident (LOCA) is governed by the hydrostatic forces that develop in the system. Digital simulation of the hydrostatic interactions during a small-break LOCA can be achieved with simplified nodal representations that significantly reduce computer times. The simplification process can be successfully achieved by combining primary system regions that behave symmetrically while preserving the basic manometer or U-tube design of the system. The simplified nodal representations have the capability of assessing the hydrostatic effects on the blowdown for the spectrum of small breaks wherein detailed model computations become economically prohibitive for parametric analyses of emergency core cooling systems.