ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Donald E. Burton, Charles M. Snell, Jon B. Bryan
Nuclear Technology | Volume 26 | Number 1 | May 1975 | Pages 65-87
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT75-A24405
Articles are hosted by Taylor and Francis Online.
Two-dimensional computer calculations were performed to model nuclear and high-explosive cratering detonations in saturated Bearpaw clay shale. Three calculations simulated 20-ton energy-yield nitromethane cratering experiments at burial depths of 6, 12.5, and 17 m. Results agreed with experimentally measured peak stresses, peak particle velocities, and crater dimensions. Calculations for a hypothetical nuclear source of the same energy at 12.5 m showed that only half as much kinetic energy was coupled into the mound; a correspondingly smaller crater was predicted. A 10-ton nitromethane source at 12.5 m was also calculated and was found to closely match the nuclear calculation. For these calculations, mound kinetic energy provided a valid criterion for achieving cratering similitude between high-explosive and nuclear events. In this case, similitude was obtained with a nitromethane source having about half the energy of the nuclear source.