ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Charles T. Rombough, Billy V. Koen
Nuclear Technology | Volume 26 | Number 1 | May 1975 | Pages 5-11
Technical Paper | Reactor | doi.org/10.13182/NT75-A24399
Articles are hosted by Taylor and Francis Online.
Studies have shown that the total energy required to construct a 1000-MW(e) nuclear power plant is about 4.1 × 109 kWh for light-water reactors. This is equivalent to ∼ 1.9% of the total energy produced by the plant (in the form of electricity) over a 30-yr life at an 80% load factor. An additional 3.4 × 108 kWh(e) of energy per year is used in maintaining the fuel cycle for a boiling-water reactor (BWR) and 3.6 × 108 kWh(e)/yr for a pressurized water reactor (PWR). This corresponds to 4.9% of the output electricity for a BWR and 5.2% for a PWR. The total investment in energy is, then, 6.8% for a BWR and 7.1% for a PWR. On a total system energy cost, nuclear plants are comparable to coal plants in that 7.8% of the plant energy is required for deep-mined coal and 6.7% for surface-mined coal.